Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress.

نویسندگان

  • Ryan M Pedrigi
  • Ranil de Silva
  • Sandra M Bovens
  • Vikram V Mehta
  • Enrico Petretto
  • Rob Krams
چکیده

In this review, we summarized the effect of mechanical factors (shear and wall stress) on thin-cap fibroatheroma formation and rupture. To make this review understandable for a biology-oriented audience, we start with detailed definitions of relevant mechanical metrics. We then describe how biomechanics has supported histopathologic efforts to understand the basis of plaque rupture. In addition to plaque rupture, biomechanics also contributes toward the progression of thin-cap fibroatheroma through a multitude of reported mechanobiological mechanisms. We thus propose a new mechanism whereby both shear stress and wall stress interact to create thin-cap fibroatheromas. Specifically, when regions of certain blood flow and wall mechanical stimuli coincide, they synergistically create inflammation within the cellular environment that can lead to thin-cap fibroatheroma rupture. A consequence of this postulate is that local shear stress is not sufficient to cause rupture, but it must coincide with regions of local tissue stiffening and stress concentrations that can occur during plaque progression. Because such changes to the wall mechanics occur over a micrometer scale, high spatial resolution imaging techniques will be necessary to evaluate this hypothesis and ultimately predict plaque rupture in a clinical environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPOTLIGHT REVIEW Biomechanical factors and macrophages in plaque stability

Thin-cap fibroatheromas (TCFAs) or vulnerable atherosclerotic plaques are considered a high-risk phenotype for acute cardiovascular events. TCFAs are identified by a thin rupture-prone fibrous cap, a large necrotic core, and a high content of leucocytes. Atherogenesis is dependent upon complex patterns of blood flow. Slow-flowing blood imposing low shear stress on the arterial wall up-regulates...

متن کامل

Elevated Uptake of Plasma Macromolecules by Regions of Arterial Wall Predisposed to Plaque Instability in a Mouse Model

Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can...

متن کامل

Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs.

BACKGROUND Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma. METHODS AND RESULTS D374Y-PCSK9 hypercholesterolemic minipigs (n=5) were instru...

متن کامل

Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study.

BACKGROUND Atherosclerotic plaques underlying most myocardial infarctions have thin fibrous caps and large necrotic cores; however, these features alone do not reliably identify plaques that rupture. Rupture occurs when plaque structural stress (PSS) exceeds mechanical strength. We examined whether PSS could be calculated in vivo based on virtual histology (VH) intravascular ultrasound and whet...

متن کامل

Role of Intravascular Ultrasound in Patients with Acute Myocardial Infarction

Rupture of a vulnerable plaque and subsequent thrombus formation are important mechanisms leading to the development of an acute myocardial infarction (AMI). Typical intravascular ultrasound (IVUS) features of AMI include plaque rupture, thrombus, positive remodeling, attenuated plaque, spotty calcification, and thin-cap fibroatheroma. No-reflow phenomenon was attributable to the embolization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 34 10  شماره 

صفحات  -

تاریخ انتشار 2014